

Heat transfer Fluids an Overview

Roger Rosander, Temper Technology AB

Schaffhausen, 29th of June 2018.

Indirect refrigeration systems vs. DX

Restrictions and limitation of refrigerant range, indirect refrigeration systems are still in focus.

Pros

- "Regular" pipes and low pressure levels
- Plastic pipes can be used (diffusion tight)
- Does not require certified welders
- Not directly sensitive to water (as refrig.)
- Cheaper installation cost efficient
- Broad range of installation components

Cons

- In some cases corrosive fluids
- High pressure drop
- High pump power
- Bigger pipes
- One "extra" heat exchange

• All HTF have pros and cons

• Water may have "no" disadvantages at least at > 0°C

• Choose a HTF suitable for the actual application and plant

Properties to consider when choosing HTF

Health and Environment Hazards

Fire Hazards

Energy efficiency – Thermophysical properties

Corrosivity - electrical conductivity mS/cm

Corrosion protection

Installation – restriction on materials

Lifespan

Cost or rather life cycle cost

Common used water based HTFs and organic fluids

Properties of fluids

Later comparisons consider food stuff applications

Types of HTF

- Alcohols
 Ethanol
- Glycols Meg
 - MPG including PDO

- NH₃ / Water
- Hydrocarbons
- Salts or brines Inorganic Calcium chloride, CaCl₂
 Organic Potassium Acetate / Formate

High viscosity also at high temperature

Compatible with most materials

Normally no need for corrosion inhibitors

Inflammable – therefore normally used down to -10/-15°C

Risk of explosion above 30%

Permission from the authorities to use alcohol

Propylene glycol has high viscosity at low temperatures and increases sharply already at -5° / -7°C

Compatible with most materials

The high viscosity leads to high energy consumption in pumps

Propylene glycol is less toxic than ethylene glycol

3-5 times the viscosity that of ammonia/water or brines already at -10°C

Ammonia in water - Ammonium hydroxide NH₄OH

Good thermal properties

Tough odour even at very low concentration

Very high pH value (13-14)

You will need high grade quality material and of course no copper

Follow local regulations using ammonia

Hydrocarbons - for instance Marlotherm XC - Ethylmetylbenzene

Very low freezing point lower than -90 °C

Industrial cooling

- Very low viscosity
- Low specific heat and thermal conductivity
- Compatible with most materials
- Inflammable
- Fatal when swallowed
- **Respiratory irritation**
- Toxic to aquatics

Calcium Chloride CaCl₂

Good thermal properties

- Freezing point > -45°C
- High pH value: 10-11

No use of stainless steel – titanium heat exchangers

Very corrosive, dichromate inhibitors needed

Potassium Acetate / Formate brines and mixtures

Good thermal properties

- Very low freezing point
- Compatible with most materials
- Not hazardous. Acetate is a preservative E261
- pH: Acetate: 8-9 Formate 10-11

Electrical conductivity: Acetate: 135 mS/cm, Formate 250 mS/cm

HTF – medium and low temperature applications

Comparison between different HTF

- Pressure drop
- Heat transfer coefficient
- Pumping energy demand

HTF – medium and low temperature applications

 Typical inlet temperature to cabinets or rooms is approximately -8°C for fridges

• Suitable freezing point for HTF, is then -15°C

Freezing point -15°C @ -8°C

HTF	Ethanol	MPG	NH ₃ /Water	Marlotherm XC	CaCl ₂	Temper- 15
Conc. %	24,4	32,9	10,8	100	18	-
Density, kg/m ₃	974	1037	961	885	1168	1121
Dyn Visc. cP	9,38	12,95	2,51	0,91	3,70	4,16
Kin Visc. cSt	9,63	12,49	2,61	1,03	3,17	3,71
Spec. heat J/kg K	4284	3855	4235	1790	3122	3381
Therm. Cond. W/m K	0,419	0,411	0,477	0,135	0,535	0,486

Pressure drop ratio with MPG. -15°C / -8°C

Heat transfer coeff. ratio with MPG. -15°C / -8°C

MPG Heat transfer coefficient

Re number

Ethanol	1661
MPG	1282
NH3	6134
Marlotherm XC	15504
CaCl ₂	5044
Temper-15	4306

Basic conditions: Tube diameter: 16 mm Flow velocity: 1 m/s Length: 10 m

Pumping energy demand

 $PPR_{12} = (\nu_1/\nu_2)^{1,95} * (\rho_1/\rho_2)^{-0,05} * (k_1/k_2)^{-2,3} * (Cp_1/Cp_2)^{-1,05}$

- PPR₁₂ using the thermophysical properties from the different products, describes the amount of energy needed to pump a fluid 1 relative to fluid 2 in order to get the same heat transfer performance.
- v = Kinematic viscosity
- $\rho = Density$
- k = Thermal conductivity
- Cp = Specific heat capacity
- This PPR₁₂ equation comes from substituting appropriate values in Equation 9 of the following paper: Sherwood, G, "Secondary Heat Transfer Systems and the Application of a New Hydroflouroether", 1195 International CFC and Halon Conference

Pump energy demand -15°C / -8°C

HTF – medium and low temperature applications

 Typical inlet temperature to cabinets or rooms is approximately -32°C for freezers

• Suitable freezing point for HTF, is then -40°C

Freezing point -40°C @ -32°C

HTF	Ethanol	MPG	NH ₃ /Water	Marlotherm XC	CaCl ₂	Temper- 40
Conc. %	53,1	54,0	21,0	100	28,3	-
Density, kg/m ₃	949	1068	939	904	1285	1225
Dyn Visc. cP	42,90	364,75	7,85	1,41	17,02	27,65
Kin Visc. cSt	45,22	341,53	8,33	1,56	13,24	22,57
Spec. heat J/kg K	3367	3359	4296	1750	2682	2865
Therm. Cond. W/m K	0,294	0,321	0,385	0,140	0,490	0,408

Pressure drop ratio with MPG. -40°C / -32°C

Heat transfer coeff. ratio with MPG. -40°C / -32°C

Ethanol	354
MPG	47
NH3	1921
Marlotherm XC	10286
CaCl ₂	1208
Temper-40	709

Basic conditions: Tube diameter: 16 mm Flow velocity: 1 m/s Length: 10 m

Pump energy demand -40°C / -32°C

Standard Corrosion Inhibitor Package

Advanced Corrosion Inhibitor Package

Areas of use

HTF may be used as waste heat defrost in CO_2 plants.

It takes a lot of electricity for electric defrosting.

At waste heat defrost, the heat is "free" and only the pump operation is operating cost.

Thank you very much for your attention!

