

Hochschule Karlsruhe Technik und Wirtschaft UNIVERSITY OF APPLIED SCIENCES

Technologies needed to cope with HFC Phase Down and Climate Change

28 June 2018

Prof. Dr.-Ing. habil. Michael Kauffeld Institute of Refrigeration, Air Conditioning and Environmental Engineering Karlsruhe University of Applied Sciences

Michael Kauffeld

National Institute of

Standards and Technology U.S. Department of Commerce

₩

1986

DANISH TECHNOLOGICAL INSTITUTE

Leibniz

Universität Hannover

2008

Hochschule Karlsruhe Technik und Wirtschaft

100

Hochschule Karlsruhe Technik und Wirtschaft UNIVERSITY OF APPLIED SCIENCES

U Institute of Refrigeration, Air-Conditioning and Environmental Engineering

Steinbeis-Transferzentrum Kälte- und Klimatechnik – ST2K Zeotropic refrigerant mixtures

Zeotropic Refrigerant mixtures, Air Cycle

Micro Channel HX, Flat Oval Tube Condenser CO_2 Car Air Conditioner

Small Ammonia Systems, CO₂, Ice Slurry, Air Cycle, Hydrocarbons, Water as Refrigerant

Ice Slurry, PCMs, Solar powered Ejector, Low Charge Systems, Mini Channel HX, Air Cycle, N₂O, Heat Pumps and Ground Probes

Smart Controls, Mini Channel HX

Other Occupations:

IIR President Commission B2 (2011 – 2015) President IIR Ice Slurry Working Group (until 2005) Vice President IIR Career in Refrigeration Working Group Organizer of various IIR Conferences Member UNEP RTOC (since 1997)

Traditional Refrigerants (approx. 1860 to 1940)

Substance	Refrigerant Number	Chemical Formula
Air ¹⁾	R 729	-
Water ²⁾	R 718	H ₂ 0
Carbon Dioxide ³⁾	R 744	CO ₂
Ammonia	R 717	
Sulfur Dioxide	R 764	Giftig
Methyl-Chloride	R 40	CH₃CI
Dimethyl Ether	E 170	
(Diethyl-)Ether	R 610	C₄An _{to} O

₩

- 1) Joule-Process, first usage 1844 by John Gorrie (USA)
- 2) First experiments with H_20 for ice production 1755 by William Cullen (GB)
- 3) CO_2 used first time 1862 by Thaddeus Lowe (USA)

₩

La historia del ozono

Consequences of climate change

- ₩-
- Dry zones will move South in southern hemisphere and north in northern hemisphere
- More heavy rain (storms) in northern and southern latitudes
- Water shortage due to the melting of glaciers which are drinking water reservoirs
- No longer Permafrost in Siberia, Canada and Alaska
- North pole ice free in summer
- Increased ice discharge from
 Antarctica due to higher snowfall and
 Melting of Greenland ice cap
 → Sea level rise 0.5 mm/y
 - Warmer oceans
 - \rightarrow Sea level rise by 1.4 mm/y

More climate related disasters

2017 Münchener Rückversicherungs-Gesellschaft, Geo Risks Research, NatCatSERVICE – As at March 2018

Munich Re NatCatSERVICE 3

₩

And that's without floods due to rising sea levels !

Kigali Amendment and EU F-Gas Regulation

or how to safe 0.5 K global warming

₩

#1: Reduce Refrigerant Charge

Rec

© Prof. Dr.-Ing. habil. Michael Kauffeld 🚸 🏶 * * *

EU F-Gas Regulation → use low-GWP Refrigerants

₩

Other selected items

 Reporting of HFOs, HFEs, NF₃ and other fluorinated substances (Article 19 and Annex II)

* * * © Prof. Dr.-Ing. habil. Michael Kauffeld * * *

European HFC prices shoot through the sky

Ökorecherche: Excerpt for participants: Monitoring of HFC prices in the EU. March 2018

Increase follows GWP:

Price increase until now R134a: More than 3 times R404A: More than 9 times R410A: More than 6 times R23: More than 30 times ! ... much more than Bitcoin

European HFC prices shoot through the sky

- In the course of last year prices have however increased substantially
- The price increases are clearly related to the GWP of the substances.
- The developments therefore largely reflect what was expected to be the impact of the phase-down mechanism where successive quota reductions increasingly favour the use of low GWP HFC as well as non-HFC gases.
- Gas prices have reached levels of 20€/tCO₂e which is fully within the range that was considered to be a proportionate contribution by this sector to the 2050 roadmap.
- The existing price signal is clearly a good incentive for stakeholders to
 - switch to low GWP technologies wherever and whenever possible,
 - to prevent leakage and
 - to <u>reclaim gases</u>.

₩

Briefing Paper: Progress of the EU HFC phase-down

F-gas Consultation Forum Meeting on 6 March 2018

Refrigeration Systems Contribution to Global Warming

According to IIR worldwide 15 % of electricity for refrigeration and air conditioning

₩

Total energy consumption in Germany /BMWi/

[/]Schwarz, J.: Energieeffizienz in der Kälte- und Klimatechnik. Energieeffizienz Kolloquium, Hochschule Karlsruhe, 12. Okt. 2012/

Electricity Consumption for Refrigeration and air conditioning

/VDMA/

TEWI Results Centralized Supermarket System

Energy emissions Refrigerant emissions

₩

But:

2015, for the first time more newly installed wind and solar power capacity than conventional power plants

/SIEMENS 2016/

Electricity cost from new power plants in 2018

© Prof. Dr.-Ing. habil. Michael Kauffeld * * * * * * ∰

TEWI Results Centralized Supermarket System

Energy emissions Refrigerant emissions

Measures needed to surpass current NDCs to reach 2°C trajectory (450 Scenario), through 2040

Note: The New Policies Scenario (NPS) is the central scenario of the World Energy Outlook and includes the energy-related components of NDCs submitted by 1 October 2015

Source: Adapted from IEA (2015b), World Energy Outlook 2015.

₩

* * * © Prof. Dr.-Ing. habil. Michael Kauffeld * * *

×

NDCs - Nationally determined contributions

Energy Efficiency

₩

Every degree lower condensing temperature or higher evaporation temperature → 2 to 3 %

lower energy consumption

* * * © Prof. Dr.-Ing. habil. Michael Kauffeld * * *

Renewables → Energy Storage Needed

^{* * * ©} Prof. Dr.-Ing. habil. Michael Kauffeld * * *

Energy Storage at KIT Karlsruhe

^{* *} C Prof. Dr.-Ing. habil. Michael Kauffeld * *

R290/Ice Slurry/R744 Refrigeration System

6 ice generators with scrapers at 14 kW refrigeration capacity (approx. 3.5 Tons ice per day each)

3 separate R290 circuits, 10 kg each

Cooling of condensers by Ethylen-Glycol-loop

Approximately 8 % Ethanol

Ice content 5 to 30 %

₩

40 m³ cylindrical storage (at 30 % ice approx. 1,100 kWh)

Ice production from 3 p.m. to max. 9 a.m.

Propane refrigeration system off from 9 a.m. to 3 p.m.

Stromauswertung Mensa KA für 2013 (bis 13.8.2013), Ademauerring

* * C Prof. Dr.-Ing. habil. Michael Kauffeld * * *

∰

Low GWP Refrigerants

^{* *} C Prof. Dr.-Ing. habil. Michael Kauffeld * * *

HFO – a personal View

₩

60 - 30 - 15

- It took <u>60 years (1930 to 1990)</u> to find out that CFCs damage the ozone layer
- It took <u>30 years (1990 to 2020)</u> to acknowledge HFCs contribute noticeable to global warming
- It will take <u>15 years</u> to accept that HFOs are harmful to the local environment (fitter's health and terminal water bodies)

₩

ISSN 0151 16

SCIENCE ET TECHNIQUE DU FROID COMPTES RENDUS

Refrigerants

₩

	GWP	Flam- mability	Toxicity	Price of refrige- rant	Price of system	Volumetric refrigeration capacity	Theoretical system efficiency
HFCs	high	no	no	moderate	low	medium	good
HFOs	low	moderate	?	high	Medium	medium	good to medium
Hydrocarbons	low	yes	no	low	medium	medium	good
Carbon Dioxide	low	no	only at high conc.	low	medium	high	good to medium
Ammonia	low	can be ignited	yes	low	high	medium	good
Water	low	no	no	low	medium	Low	good

... but many other aspects to be considered,

e.g. oil miscibility, real system efficiency etc.

* * * © Prof. Dr.-Ing. habil. Michael Kauffeld * *

CO₂ transcritical

₩

More than 15 000 transcritical centralized systems built worldwide until 2017

CO₂ transcritical

- More than 15 000 transcritical centralized systems built worldwide until 2017
- Energy efficiency good in cold and moderate climate, i.e. north of Switzerland
- energy efficiency of basic transcritical cycle lower than standard R404A system in warm climate
- Initial cost up to 10 % higher than standard R404A system
 - CO₂ requires special knowledge due to high pressures – up to 120 bar in outdoor coil
 - Indoor part of system can be kept below 40 bar during normal operation
 - Take care of excessive pressures during longer stand still period
 - Small pipe dimensions
 - Good heat recovery

Optimization of transcritical CO₂-Systems

For high ambient temperatures:

₩

(*)

Lower gas cooler exit temperature:

- Water spray / evaporative cooling
- Ground (water) as heat sink
- External refrigeration system (mechanical subcooling)

© Prof. Dr.-Ing. habil. Michael Kauffeld * * * * * *

refrigeration plan 9, Sept. 2016, P.

Volume 69, transcritical

Refr., 80

Optimization of transcritical CO₂-Systems

For high ambient temperatures:

Mechanical subcooling 1992 with R12

¥

Optimization of transcritical CO₂-Systems

For high ambient temperatures

₩

Ejector Technology: The next 22. ATMOsphere America 2015

Madsen, K.B.; Knudsen, J.: Eje generation in transcritical CO2.

Torben Funder-Kristensen: Ba of best low GWP technologies

R744 Supermarket Systems

Source: Frigo-consulting AG

₩

* * C Prof. Dr.-Ing. habil. Michael Kauffeld * *

Cascade System with Ammonia and CO₂

₩

• R717 charge only 10 – 20 % of all-ammonia system

- CO₂-Compressors are typically 8–12 times smaller than comparable ammonia compressors
- Energy efficient application of CO₂-cascade – MT and LT sub-critical (18 to 25 % better than HFC DX system)
- All components available; CO₂ pressure during operation below 40 bar
- Significantly, smaller suction pipes (typically 2 to 3 sizes smaller)

[©] Danfoss :CO2 refrigerant for Industrial Refrigeration

- Lower maintenance cost due to fewer service checks and cheaper refrigerant
- Invest 10 20 % higher than HFC, but payback time often less than 2 years

Milligan, K.; Ali, M.: Ultra-low charge NH_3/CO_2 cascade system in a retail environment. Atmosphere America, 2016

Ole Christensen: System Design for Industrial Ammonia/CO₂ Cascade Installations. 2006 IIAR Ammonia Refrigeration Conference & Exhibition, Reno, Nevada

Dream Team: Ammonia CO₂-Cascade

Ammonia refrigeration for kitchen at Daimler

5.000 meals daily; Cook and Chill

MT System:

- 40 cooling sites and 15 refrigerated rooms (Ethylene glycol 35 %)
- Refrigeration capacity ca. 65 kW
- $t_0 = -10 \text{ °C}$; Ethylene glycol 35 %, t = -8 °C / 4 °C
- t_c =+ 38 °C; cooling water +30 °C / +35 °C

LT- System

- 2 cooling sites and 1 LT-room
- CO₂ DX
- Refrigeration capacity ca. 8 kW
- $t_0 = -32 \ ^{\circ}C$; $t_c = -2 \ ^{\circ}C$
- Brine -8 °C / -4 °C
- Safety cooling via small Propane system
- Invest ca. 20 % higher
- Energy consumption 0 to 5 % lower
- Total operating cost ca. 25 % lower due to easier service of piping system and lower refrigerant cost

Ammonia Chiller

- Ammonia is poisonous but it stinks !!!
 → Built-in leak detector
- o Ammonia achieves highest COP
- Low charge possible (30 g/kW) indirect and cascade systems
- Examples of ammonia chillers in Aarhus:
 e. g. Scandinavian Congress Center (1200 kW),
 Salling department store,
 but also Shopping Center Fields in Copenhagen,
 Copenhagen Airport und Heathrow Airport

* * C Prof. Dr.-Ing. habil. Michael Kauffeld * *

Hydrocarbons

Zero ODP

₩

- □ Low GWP
- Non-toxic
- □ Good thermodynamic properties, among others
 - Good heat transfer
 - Low pressure ratio
 - High volumetric refrigeration capacity
- □ High energy efficiency (+10 % comp. to HFC)
- Non-corrosive
- Oil compatibility
- Stable

- Flammable
- Available
- □ Affordable
- Possibly add odorant (Pyrazine)

Hydrocarbons - Flammability

Fuel = refrigerant leakage

Ignition source

Energy larger than 0.25 mJ or Temperature above 440 °C

Practical limit for hydrocarbon refrigerants: 8 g/m³ air

Oxygen or flammable mixture with air more than 2 % hydrocarbon, less than 10 %		Flammability limit in air Vol%	Auto-Ignition temperature °C	
	Propane (R290)	2.1 – 9.5	470	
	n-Butane (R600)	1.3 – 8.4	370	
	Isobutane (R600a)	1.8 - 8.4	460	
Gasoline		1.1 – 7.0	260	
	Ammonia (R717)	15.5 – 27.0	> 400	
	R152a	3.7 – 20.0	455	
	R1234yf	6.2 – 12.3	405	
GWP 32 = 675	R32	14.4 – 29.3	650	

Korean Air Conditioning and Cooking

Hydrocarbons Phenomenon

**

Propane – CO₂ Low Temperature Warehouse

WIR KÜHLEN MIT SYSTEM

- 45 kg R290 200 kW @ -7 °C p_{max} = 25 bar
- 110 kg R744
 155 kW @ -38 °C
 p_{max} = 40 bar
- 15 % lower annual energy consumption than R404A
- Same investment cost as R404A
 for larger systems even cheaper

Water (R718) as Refrigerant

... for chiller

₩

- Not flammable, not toxic
- System pressures below atmospheric,
 i.e. 10 °C → 12.3 mbar and 35 °C → 56.3 mbar
 → eliminate pressure drop due to flow losses
- Large vapor volume flow
- Separate developments at
 - IDE
 - ILK Dresden
 - Consortium of DTI / KOBE Steel / Johnson Controls / 3 Japanese Power Companies Q₀ = 800 kW → 10 to 15 % lower energy consumption as HFC-system
 - Kawasaki Heavy Industries $\dot{Q}_0 = 350 \text{ kW}$
 - Efficient Energy $\dot{Q}_0 = 35 \text{ kW}$ with chilled water temp. 22 / 28 °C
- Systems exist e.g. at:
 - VW Manufaktur in Dresden,
 - Nissan (Japan) and
 - LEGO in Denmark

* * C Prof. Dr.-Ing. habil. Michael Kauffeld * *

Time Line for Refrigerants

Summary

₩

₩

HFC-free refrigeration systems are built with good energy efficiency – often better than HFC-systems

Alternatives are:

 \Box CO₂ transcritical or as lower stage of a cascade system

□ Ammonia still # 1 in industrial refrigeration

Hydrocarbons for smaller systems and chillers

□ Water as refrigerant very interesting @ temperatures over 0 °C

- Refrigerant charges can be greatly reduced applying up to date technology (Mini-channel heat exchangers)
- □ Refrigeration systems offer energy savings potentials
 → utilize them !
- Accumulation of cold can save cost and energy

Contact:

Prof. Dr.-Ing. habil. Michael Kauffeld

Karlsruhe University of Applied Sciences Mechanical Engineering and Mechatronics Department Institute of Refrigeration, Air Conditioning and Environmental Engineering

Moltkestr. 30 76133 Karlsruhe Germany

Tel.: +49 721 925 1843 Fax: +49 721 925 1915 E-Mail: michael.kauffeld@hs-karlsruhe.de