

eurammon Symposium 2018

Energy Efficiency – A Global Challenge

Schaffhausen, 28th / 29th June, 2018

Energy Efficiency – A Global Challenge

Contents

- Initial situation Global Warming
- Programs and Standards on Energy Efficiency
- Calculation Methods
- Efficiency Requirements
- Efficiency improvement options
- Summary

Initial Situation

Initial Situation

- Climate Change / Global Warming is a world-wide threat and challenge
 ⇒ Issue: increasing direct and indirect CO₂ emissions
 - **Resulting programs** (1)
 - Paris Climate Accord* international agreement

Key aim \Rightarrow CO₂ emission reduction by:

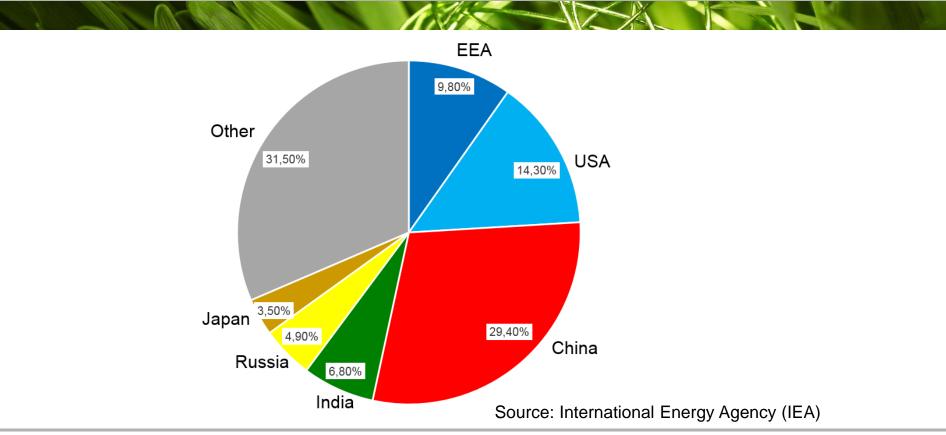
Holding the increase in global average temperature well below 2°C above pre-industrial levels and pursue efforts to limit temperature increase to 1.5°C

Note! Manufacture and use of (H)FCs are regulated separately:

EU: F-Gas Reg. 517/2014 (e.g. Phase-down by 79% until 2030)

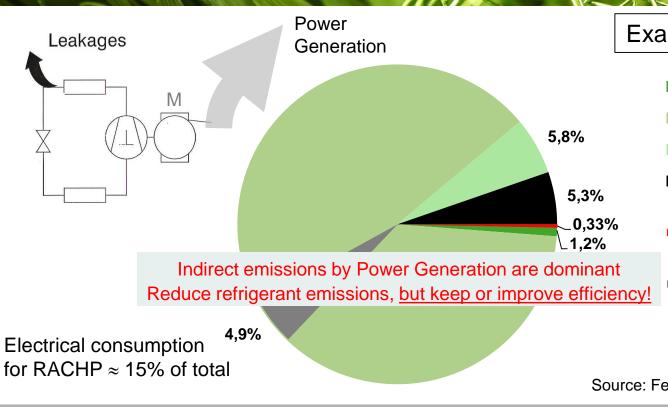
International: Kigali Agreement (80..85% reduction until 2045)

* Supported by national and regional Climate Protection Programs


Countries with High CO₂ Emissions (2015)

	CO ₂ Emissions in million tons		Change since 1990 in percent	CO ₂ Emissions per resident in tons
China	10720 Mio. t		+355%	7,7t
USA	5180		+3	16,1
India	2470		+272	1,9
Russia	1760	-26		12,3
Japan	1260		+8	9,9
Germany	780	-24		9,6
Canada	680		+23	19,0
Iran	630		+214	8,0
South Korea	620		+129	12,1
Saudi Arabia	510		+201	16,0
Indonesia	500		+214	2,0
Brazil	490		+120	2,3
Mexico	470		+63	3,7
Australia	450		+60	18,6
			Source	: European Commission (EC)

Schaffhausen, 28th / 29th June, 2018 Page 5


Global CO₂ Emissions by Country / Region

Programs and Standards on Energy Efficiency of RACHP Equipment and Systems

Relation of Direct and Indirect Emissions

refrigerants delivered by mother nature

Example Germany 2010

F gases

- CO₂ (Carbon Dioxide)
- N₂O (Nitros Oxide)
- CH₄ (Methane)
- Emissions from stationary refrigeration systems
- Emissions from power consumption of stationary refrigeration systems

Source: Federal Environmental Agency (UBA)

Examples of Programs and Standards for Efficiency Improvement (1)

- EU: Ecodesign Directive 2009/125/EC Improved energy efficiency of energy-related <u>Products</u>
 - EU: Directive 2010/31/EU Energy Performance of <u>Buildings</u> (EPBD)
 - Including associated Standards and Certification Schemes
- USA: EPA National Action Plan for Energy Efficiency
 - Including e.g. Energy Star Program, ASHRAE 90.1 Standard, AHRI 550/590 Standard and Certification Schemes, …

Examples of Programs and Standards for Efficiency Improvement (2)

- Japan: Ministry of Economy, Trade and Industry (METI)
 - Energy Efficiency "Top Runner Program"
- China: Minimum Energy Performance Standards
 - > e.g. GB19577-2015 Efficiency Grades for Chillers
- India: National Mission for Enhanced Energy Efficiency (NMEEE)
 - ➢ e.g. ISHRAE Standard for Chillers

Example EU: Projects (Lots) / Regulations within the Ecodesign Framework Directive 2009/125/EC

Commissions Energy (ENER) and Enterprise (ENTR)

ENER Lot.			ENTR Lot .	
1. Boilers 🔀 - under revision	10. Air con < 12 kW 🗵 - under revision	20. Local room heating	1. Refrigeration	
2. Water heaters	11. Motors, fans, 🔀	21. Central heating, X cooling products	2 ransformers	
3. PC	. Com. Refrigerators	·	3. media	
4. c • Axial fa	INS mestic Refrig		4. furnaces	
5. T with mo	otor sh washers	30. Motors / Drives	Condensing Units	
6. Stand-by losses	15. Fossil fuel	31. Compressors	• MT & LT	
7. Battery charger	16. • HT Proces	a Chilloro	Process Chillers	
8. Office lights	 17. Comfort A 		8. Power cables	RACHP Involvemen
9. Street lights	10	g Heat Pumps	9. Enterprise servers	Current main work
	19. Domestic lighting			items for RACHP

EU Major Projects for RACHP

Current Major Focus

ENTR Lot 1 (EU) No. 2015/1095 – in application since July 2016 Tier-2 as of July 2018

> Professional Storage Cabinets, Blast Cabinets, <u>Condensing Units</u> and <u>MT/LT Process Chillers</u>

ENER Lot 21 (EU) No. 2016/2281 - in application since Jan. 2018 Tier-2 as of Jan. 2021

Air Heating Products (incl. "Air" HP), Cooling Products (incl. A/C Chillers) and High Temp Process Chillers

Requirements for Placing Products on the Market (1)

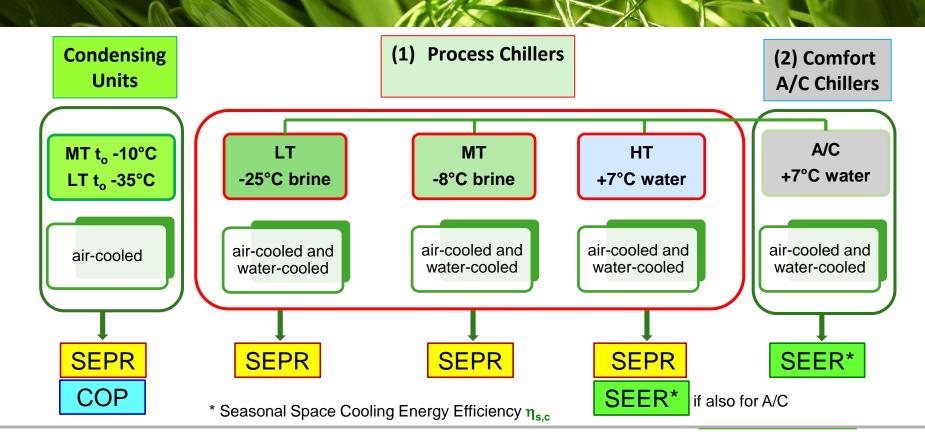
COP or EER evaluation at one reference condition is history with larger condensing units and liquid chillers

- Condensing Units (> 5 kW (MT) / 2 kW (LT)*
 - SEPR "Seasonal Energy Performance Ratio" based on COP at 4 reference points ⇒ <u>Annual</u> temperature profile

Process Chillers

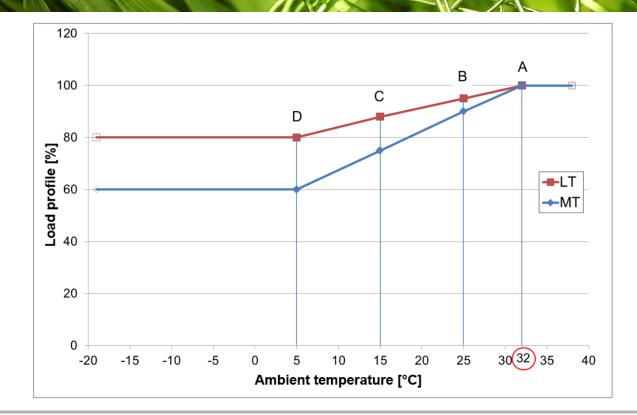
SEPR "Seasonal Energy Performance Ratio"
 based on EER at 4 reference points ⇒ <u>Annual</u> temperature profile

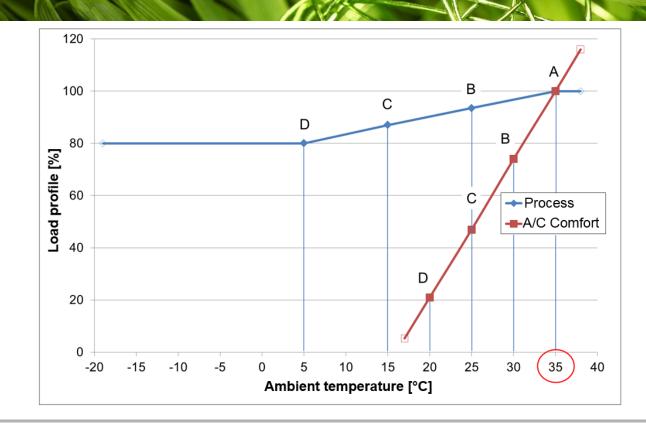
* COP declaration only with smaller CU ("indoor" application)


Requirements for Placing Products on the Market (2)

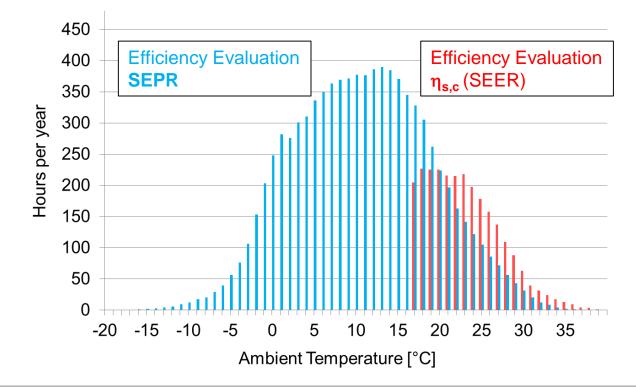
Comfort A/C Chillers (HT Process chillers – if also for A/C)

- Seasonal Space Cooling Energy Efficiency [%] calculated from:
- SEER "Seasonal Energy Efficiency Ratio"
 based on EER at 4 reference points ⇒ Summer temperature profile

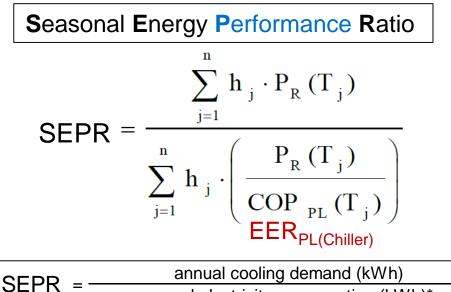

Summary – Methods for Efficiency Evaluation


Calculation Methods Load and Temperature Profiles

Condensing Units > 5 kW (MT) / 2 kW (LT) Load Profile vs. Ambient Temperature

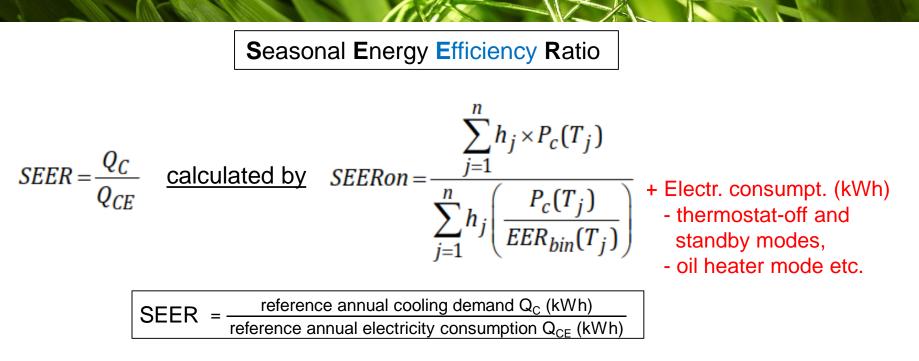


Liquid Chillers - Load Profile vs. Ambient Temperature


Temperature Profile (EN 14825) for A/C Chillers vs. Temperature Profile for Process Chillers and CU

$\begin{array}{c} \textbf{Calculation Methods} \\ \textbf{for Evaluation of SEPR and } \eta_{\textbf{s},\textbf{c}} \left(\text{SEER} \right) \end{array}$

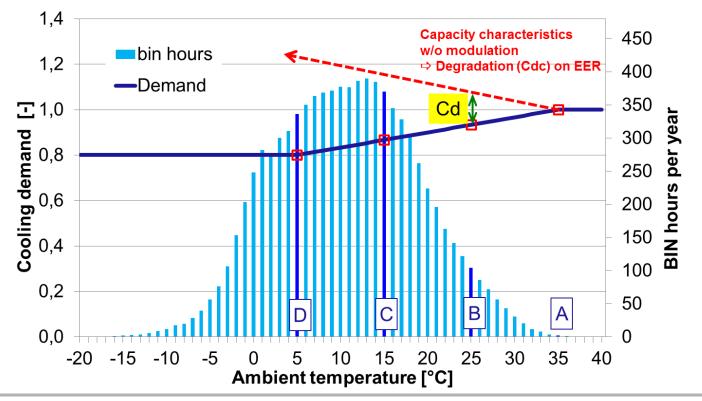
SEPR Calculation Method – CU and Process Chillers



annual electricity consumption (kWh)*

 $COP_{Pl}(T_i) = COP$ values of the <u>condensing unit</u> for the corresponding BIN temperature T_i EER_{PL} = EER values of the <u>chiller</u> for the corresponding BIN temperatur T_i

SEER Calculation Method (EN14825) - A/C Chillers


 $EER_{bin}(T_i) = EER$ values for the corresponding BIN temperature T_i

= Annual electricity consumption incl. thermostat-off mode, oil heater etc.

Q_{CF}

Degradation Coefficients for EER Correction – Example: Process Chiller w/o Capacity Modulation

A/C Chillers – Conversion of SEER to Seasonal Space Cooling Energy Efficiency $\eta_{\text{s,c}}$

$$\eta_{s,c}$$
 [%] = $\frac{1}{CC}$ • SEER [%] - $\Sigma F_{(i)}$ [%]

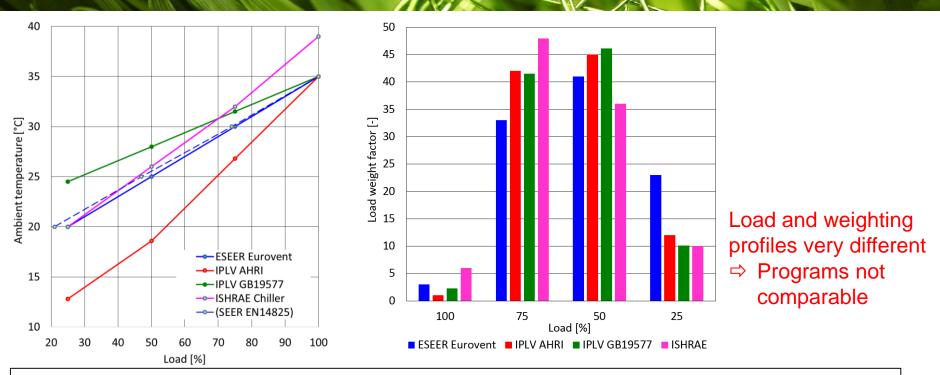
$$\eta_{s,c} [\%] = \frac{SEER \cdot 100}{2.5} - 3 \qquad \frac{\eta_{s,c} [\%]}{\eta_{s,c} [\%]} = (SEER \cdot 40) - 3$$

• Conversion Coefficient CC = 2.5 (PEF) ⇒ currently in discussion (2.0 .. 2.3?)

reflecting the estimated 40% average efficiency for generating electrical energy within the EU – acc. to Directive 2012/27/EU, Annex IV

• Summation of Corrections $\Sigma F_{(i)} = 3\%$

accounts for the "negative contribution due to adjusted contributions of temperature controls"

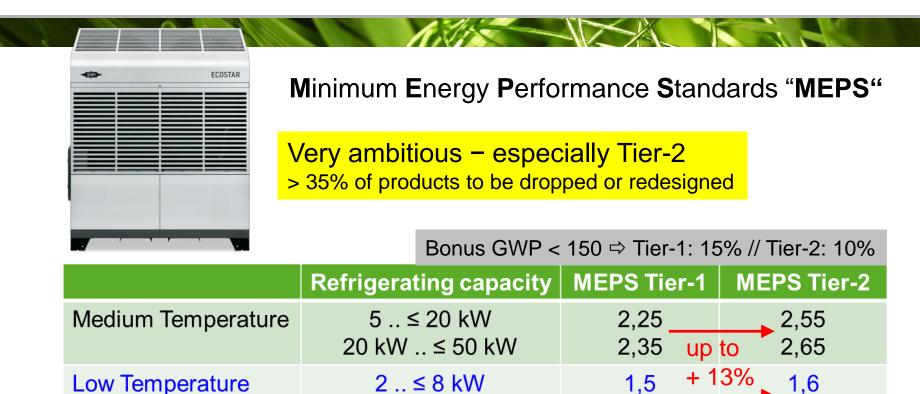


Excel Sheet for SEPR Calculation – Example: Process Chillers

	Α	В	С	D	E	F	G	Н		I	
1		trial Proces	s Chiller (HT / MT / LT)	– Fix Capaci	ty or Stepless	Capacity Control		Tool version 1.5.	.3	2013-09-01	
2	2										
			pacity at full load	593,00	DC = declared	cooling capacity at tem	peratures A, B, C			ng points B, C ar	
З	i.e. Poi	nt A (DC, in kV	V)	393,00	1				of the coo	ling demand (P _F	() - Cł
4				/							
5 Degradation Calculation											
-			Cooling domand (D.)	DC in kW	EER at this DC	Degradation	Capacity Ratio	FFD at Dart Load FFF			
6		EER	Cooling demand (P _R)	(measured or calculated)	(measured or calculated)	coefficient Cc	CR	EER at Part Load EEF			
	EERA	2,41	(=DC(full load)*Partload) 593.00	593.00	2,41		(=P _R /DC) 1,00	(=EER@full cap)*CR/(Cc*C	2.41		
	EER B	3,05	553,47	620,00	3,05	0,90	0,89		3,01		
	EER C	3,66	513,93	660,00	3,66	0,90	0,78		3,56		
11	EERD	4,24	474,40	710,00	4,24	0,90	0,67		4,04		
	U 1	Pleaseconsid	er: Selection of EERA, EERB, EE	RC, EERD depends	on	If Cc is not determin	ed by Ratio	between cooling demand a	nd declare	ed capacity	
12	12 different ambient temp conditions, load profile and application test then the default (CR=1, in case of a continuous capacity adjustm					istment)					
	temperature (HT, MT, LT) degradation coefficient										
13	Cc shallbe0.9							l l			
14		j	Tj (°C)	hj	part load %	cooling demand	EERPL	Ph*Tj		PH*Tj/EERDC	
15		1	-19	0,1	80%	474,40	4,04		40	10	Temperature range
16		2	-18	0,4	80%	474,40	4,04		193	48	
17		3	-17	0,6	80%	474,40	4,04		307	76	for SEPR calculation –
											from -19°C to 38°C
68		54	34	3,8	99%	589,05	2,47		2.256	913	
69	Α	55	35	2,1	100%	593,00	2,41		1.240	515	in 1 K increments
70		56	36	1,2	100%	593,00	2,41		716	297	
71		57	37	0,5	100%	593,00	2,41		309	128	4 Reference Conditions:
72		58	38	0,4	100%	593,00	2,41		238	99	
73							total	4.39	3.752	1.205.605	35°, 25°, 15°, 5°C ambient
74											
75								SEPR		3,64	
76											
Irammon Schaffhausen, 28th / 29th June, 2018 Page 25											

refrigerants delivered by mother nature

Other Programs / Calculation Methods for A/C Chillers



(E)SEER / IPLV = LWF A x EER A + LWF B x EER B + LWF C x EER C + LWF D x EER D

Efficiency Requirements

Reg. 2015/1095: MEPS Requirements for Condensing Units

 $8 \, \text{kW} \dots \leq 20 \, \text{kW}$

1,7

1,6

Reg. 2016/2281: MEPS Requirements for A/C Chillers

Minimum Energy Performance Standards "MEPS"

Very ambitious – especially Tier-2 Large proportion to be dropped or redesigned

Comfort A/C Chillers – $\eta_{s,c}$ / (SEER) Analysis – $\eta_{s,c}$ based on PEF 2.5

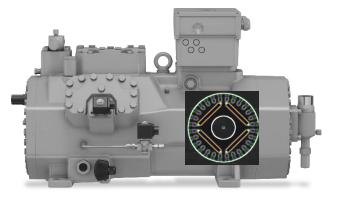
	Cooling capacity	η _{s,c} (SEER) Tier-1	η _{s,c} (SEER) Tier-2
air-cooled	< 400 kW ≥ 400 kW	149% (3,8) 161% (4,1) up	161% (4,1) 179% (4,6)
water-cooled	< 400 kW ≥ 400 kW ≥ 1500 kW	196% (5,0) + 1	1% 200% (5,1) → 252% (6,4) 272% (6,9)

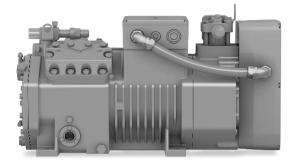
Efficiency Improvement Options Example: Compressors

Efficiency Improvement Options with Compressors

Main challenges with regard to system load and temperature profiles

- > Majority of operating time is at part load conditions
 - Requires compressor optimisation for highest part load efficiency
- Quick load variations lead to pressure fluctuation and instable operating behavior impact on system efficiency
 - Requires close step or stepless capacity modulation
- Improved capacity & efficiency at high lift conditions e.g. heat pumps, LT appl.
 - Potential for "Economiser" operation with screw and scroll compressors
- Reliable operation and high availability
 - Requires "intelligent" monitoring and control of integrated functions


Efficiency Improvement Options with Recip' Compressors


Semi-hermetic recip' (CO₂)

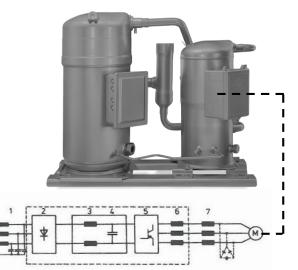
- LSPM motor / DOL or VSD
- Quasi stepless mech. CR
- Module for control of functions

Semi-hermetic recip'

- Integrated FI (VSD)
- FI refrigerant cooled
- Stepless CR

Efficiency Improvement Options with Scroll Compressors

Scroll Multi Packs


- VSD of lead compressor
- Oil equalising system

Single Scroll

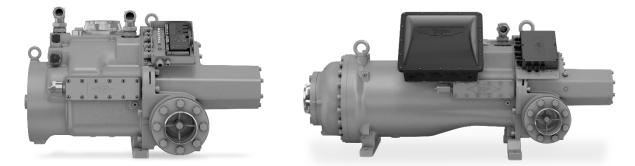
- LSPM motor
- DOL or VSD

Single Scroll

- Economiser
- e.g. Heat Pump

Efficiency Improvement Options with Screw Compressors

Open drive screw (NH₃)


- Slider cap control or VSD
- Slider Vi control
- Economiser
- Module for control of functions

Semi-hermetic screw

- Slider cap control or VSD
- Slider Vi control
- Economiser
- Module for control of functions

SH Compact screw

- Integrated FI for VSD
- PM motor
- Slider Vi control
- Economiser
- Module for control of functions

Summary

- Global warming and progressing shortage of resources are initiating worldwide legal measures in order to ...
 - ➢ improve the energy efficiency of RACHP equipment
 - reduce energy consumption of buildings
- Different Programs and Standards mostly <u>not</u> harmonised on international level
- MEPS requirements are very ambitious often require a modification of equipment or even a new design
- One possible approach ⇒ High efficiency compressors with optimised capacity modulation techniques and motor design

eurammon is always available as a sparring partner for questions on refrigeration with natural refrigerants.

Contact:

Hermann Renz Eschenbruennlestr. 15, D-71065 Sindelfingen, Germany Phone: +49 7031 932 240 E-Mail: <u>hermann.renz@bitzer.de</u>